Presentation Type
Poster
Location
Merrick Hall Room 301
Start Date
21-4-2022 5:10 PM
End Date
21-4-2022 6:10 PM
Disciplines
Chemistry
Keywords
Organic Chemistry, Inorganic Chemistry
Abstract
A redox-active ligand scaffold, dipyrrin, was synthesized in the interest of activating oxygen. The synthesis of the scaffold was modified from previous pathways. The original pathway used a Negishi-coupling followed by condensation with a benzaldehyde using pyrrole and di-tert-butyl anisole before being demethylated using either boron tribromide or a thiolate. The modified synthesis constructs the scaffold with a Negishi-coupling followed by a condensation with a benzaldehyde using pyrrole and a silyl protected di-methyl-phenol before being deprotected using triethylamine trihydrofluoride. The new pathway provides the opportunity limit toxic reagents and improve the overall efficiency of the synthesis. The dipyrrin scaffold was synthesized with differing phenol and naphthol groups and was analyzed using UV-vis spectroscopy and electrochemistry. These compounds display a strong long-wave absorption and reversible redox activity, making these promising candidates to support catalytic activity.
Project Origin
Summer Research Opportunity
Faculty Mentor
Allen Pistner
Included in
The Development of Dipyrrin Platforms for Oxygen Reduction
Merrick Hall Room 301
A redox-active ligand scaffold, dipyrrin, was synthesized in the interest of activating oxygen. The synthesis of the scaffold was modified from previous pathways. The original pathway used a Negishi-coupling followed by condensation with a benzaldehyde using pyrrole and di-tert-butyl anisole before being demethylated using either boron tribromide or a thiolate. The modified synthesis constructs the scaffold with a Negishi-coupling followed by a condensation with a benzaldehyde using pyrrole and a silyl protected di-methyl-phenol before being deprotected using triethylamine trihydrofluoride. The new pathway provides the opportunity limit toxic reagents and improve the overall efficiency of the synthesis. The dipyrrin scaffold was synthesized with differing phenol and naphthol groups and was analyzed using UV-vis spectroscopy and electrochemistry. These compounds display a strong long-wave absorption and reversible redox activity, making these promising candidates to support catalytic activity.