Laboratory Mice Burrowing Responses to Predator Calls

Katie Vonderembse
Ohio Wesleyan University

Brianna Graber
Ohio Wesleyan University

Molly Seeberger
Ohio Wesleyan University

Follow this and additional works at: https://digitalcommons.owu.edu/studentsymposium
Part of the [Animal Studies Commons](https://digitalcommons.owu.edu/studentsymposium) and the [Zoology Commons](https://digitalcommons.owu.edu/studentsymposium)

Vonderembse, Katie; Graber, Brianna; and Seeberger, Molly, "Laboratory Mice Burrowing Responses to Predator Calls" (2019). *Student Symposium*. 24.
https://digitalcommons.owu.edu/studentsymposium/2019/poster_session/24

This Poster is brought to you for free and open access by the Student Scholarship at Digital Commons @ OWU. It has been accepted for inclusion in Student Symposium by an authorized administrator of Digital Commons @ OWU. For more information, please contact earutigl@owu.edu.
Introduction

The avoidance of predation is an essential trait in mice and depends on the ability of the mouse to recognize its predators. Laboratory mice have been shown to respond with defensive behaviors when exposed to the calls of their primary predators, owls (1). Our experiment studied behaviors in male and female laboratory mice before, during, and after owl calls were played to individual mice in a tank. Important defensive behaviors include burrowing and sniffing. Control tests of human voices reading a book were also performed with all males and females.

Methods

- Used 3 home tanks of laboratory mice, *Mus musculus*: 1 tank males mice and 2 tanks females (Fig. 4)
- Experiment tank was filled with bedding and a plastic tube
- 3 predator calls were played to mice: Eastern Screech Owl (*Megascops asio*), Tawny Owl (*Strix aluco*), and American Barn Owl (*Tyto furcata*)
- Periods included:
 - 2 minute “before” period for the mouse to get used to its environment
 - 1 minute “during” period in which the predator call was played
 - 5 minute “after” period to record behaviors following a predator call
- During each period, behaviors were recorded using tallies for how many times each behavior occurred (Table 1)
- This process was repeated 6 more times for each predator call

<table>
<thead>
<tr>
<th>Behavior and Picture Number</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investigating Tunnel (1)</td>
<td>IT</td>
<td>Standing on top of tunnel, looking through entrance of tunnel</td>
</tr>
<tr>
<td>Inside Tunnel (2)</td>
<td>TB</td>
<td>Mouse's full body inside the tunnel</td>
</tr>
<tr>
<td>Natural Burrowing (3)</td>
<td>NB</td>
<td>Digging and moving bedding</td>
</tr>
<tr>
<td>Vocalizing (Not Pictured)</td>
<td>V</td>
<td>Vocalizations or squeaks from the mouse</td>
</tr>
<tr>
<td>Sniffing (4)</td>
<td>S</td>
<td>Sniffing upwards in the air or bedding near it</td>
</tr>
<tr>
<td>Running (5)</td>
<td>R</td>
<td>Mouse moving quickly for some distance</td>
</tr>
<tr>
<td>Freezing (6)</td>
<td>F</td>
<td>Mouse not moving for a few seconds</td>
</tr>
<tr>
<td>Grooming (7, 8)</td>
<td>G</td>
<td>Mouse participating in any sort of bodily cleaning</td>
</tr>
</tbody>
</table>

Results

There was no significance in the difference between burrowing behavior, sex, predator call and period.
- Period/sex: Pr(>F) 0.7605 (Fig. 1)
- Predator/period: Pr(>F) 0.8969 (Fig. 2)
- Predator/sex: Pr(>F) 0.2821 (Fig. 3)

Conclusion

Overall, our findings were insignificant. There was no significant differences between predator, sex, period, and burrowing behavior. The variable closest to being significant was sex with a p value of 0.0714.

A reasoning behind the non-significant differences could be that the mice react to all predator calls the same, regardless of species. For next time, adding different stimuli, other than just the playback sound, such as visual and olfactory cues could produce more significant results. In past research, it has been discovered that mice use olfactory cues the most to detect potential predators, so perhaps the added stimulus of the predators' scent would make the mice act differently (2).

In conclusion, there was not enough significant data to show that our hypothesis was correct. Though there was enough raw data, it was proven to be insignificant.

Literature Cited

Acknowledgements

- This experiment was done in honor of Bertha and her devoutness to the sciences.
- We would also like to thank Dr. Shala Hankison for all of her support and guidance.